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Abstract. In this paper we give solutions to fundamental problems of the Wess-Zumino- 
Witten model for general cases. We find also the explicit connection between the crossing 
matrices of the SU(2), wzw model and the crossing matrices of the SL(2, q )  quantum 
group; the latter are the quantum Racah coefficients. 

1. Introduction 

In recent years the study of conformal field theory has developed a great deal [l-31. 
As we know, the SU(2)k wzw model is connected with the minimal [l] model, the 
superconformal model [2] and the parafermionic model [4] through the GKO coset 
constructions [3]. For example, the constructions SU(2)k OSU(2)f /SU(2)k+~,  when 
I = 1, correspond to the minimal model, I = 2 corresponds to the superconformal model, 
1 z 3 corresponds to the parafermionic model. So study of the SU(2)kwzw model is 
not only helpful to understanding the model itself, but also helpful for understanding 
the theories of the minimal model, superconformal model and parafermionic model 
etc. Recently, Alvarez-GaumC et al found that the SU(2)kwzw model is related to the 
SL(2, q )  quantum group [ 5 ] .  In this paper we will make this relation clearly and 
explicitly. 

A few years ago, Knizhnik and Zamolodchikov discussed the SU(n) wzw model 
and provided an equation satisfied by the correlation functions (the so-called KZ 

equation) [6]. Tsuchiya and Kanie [7], using the approach of vertex operators, studied 
the SU(2), wzw model. They identified a fundamental problem of the model, namely 
to determine the crossing (braid or fusion) matrices of the model. They gave a solution 
to the reduced KZ equation for the case of isospin j 3  = i, and worked out the solution 
to the fundamental problem for that case. They did not give general solutions, mainly 
because of the difficulty of solving third-order or higher-order differential equations. 
From this paper we find that the crossing matrices do not depend on the detailed forms 
of the solutions to the reduced K Z  equation, it depends on the exponents of the 
differential equations at singular points. Thus, we need not solve the KZ differential 
equations. In the present paper, solution of the fundamental problem for the case 
j 3 =  1 is worked out as an example of our method. The general solutions are given 
thereafter. 

A brief review of the fundamental problem is given in the next section. The KCG 
constraint to the model is discussed in section 3. Solutions to fundamental problems 
for j ,  = 1 and general cases are given in section 4. In section 5 we provide an explicit 
connection between the SU(2)k wzw model and SL(2, q )  quantum group, namely that 
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the crossing matrices of the SU(2)k wzw model and those of the SL(2, q )  quantum 
group are connected by triangle matrix transformations which reduce to similar 
transformations when j ,  = j , .  

2. The fundamental problem of the model 

For the sake of completeness, we had better give a brief review of the fundamental 
problem of the SU(2)k wzw model. 

A triple ( j : j l )  of non-negative half integers j , ,  j ,  and j is called a vertex which 
presents a process of coupling jO j ,  + j ,  . In [ 7 ]  it was proven that there exists a non-zero 
vertex @ of type ( j : j , )  on 2t if and only if the vertex ( j : j , )  is a KCG vertex, i.e. it satisfies 
the K-constrained Clebsh-Gordan conditions: 

Ij, -jl S j ,  s j l  + j  j l + j 2 + j < k  j ,  + j ,  + j E Z (2.1) 

where 2t is the highest-weight space of an affine Lie algebra of type A\').  
The KZ equations for the SU(2)k wzw model have the forms 

where 

and t4 are the representations of the SU(2) generators of the field Q i .  

which correspond to ( j $ p )  and (ij,), respectively (as shown in the figure below): 
For a quadruple ( j ,  j 3  j ,  j , )  of half integers, we have two vertices @ , ( w ) ,  Q2(z) 

The correlation function $( w, z )  = (Q,( w)@,(z) )  satisfies the equation 

(k+2)----- a R 2 3 ) 4 ( W , z ) = 0  ( aw w w - z  

(k+2)----- a f i 2 3 ) + ( w , z ) = 0  ( a2 z z - w  

(2.4) 

which is just the KZ equation for the case z ,  = 0, z2 = z, 23 = w and z, = 03. From (2.4) 
we also find 

+(w,  z ) = O  

where 
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Introduce a variable 5 = z /  w. From (2.5) we find that the function zA4+( w, z w )  is 
independent of w. So, we abbreviate zA44(w, z w )  to 4({). Then, from (2.4) we obtain 
the reduced KZ equation 

The change of coordinate l-, 7) = 1 / l  transforms equation (2.6) into 

(k+2)----- 

For any quadruple (j, j, j2 j l ) ,  the function $(5) is Vo valued, the space Vo is the 
space of all SL(2,c) invariant elements in V,,@V,,@V,,@V,,, and V, is the dual 
SL(2, c)-modules of the irreducible left SL(2, c) module of isospin j. There are three 
orthogonal bases {U;::}{ U::,'}{ U;:'} of Vo, defined by 

U::: = 1 ( -1)J4-m4CJ~~m~~C$mh m 1 m 2  
3 cp ~ ~ ( - ~ 4 )  @ P J , ( ~ ~ )  @ (DjZ( m2) @ SI( ml)  

J $ 1  m 1 + m 2 = m i 2  
mI2+m3 = m4 

1 U") =- (- 1 ) J 4 - m 4 C 3 2 3  C~,2;cpJ4( - m4) 0 cpJ m 3 )  0 U,,( m2) 0 v ,~  ( ml 1 
'23 m2+m3=m23 

m23+ m ,  =m4 

( 2 . 8 )  

mz+ m i ,  = m4 

where Ciri2 are CG coefficients, and qjm)  are elements of the base of V,. The three 
bases of Vo defined in (2.8) diagonalise the operators ill , ,  and a13 respectively, i.e. 

where Aj = j ( j + l ) / ( k + 2 ) .  
Write a solution to equation (2.6) as 

*(g) = u(')*( i ' (J) = U'"'*'"'(l/~) i = O ,  1 (2.10) 

where U ' o ) $ ( o ' ( ~ ) ,  U ( ' ) $ ( ' ) ( ~ )  and U'"'$'"'(l) are the solutions to (2.6) under the 
bases U('), U ( ' )  and U(m), respectively. And the three solutions analyse at l=  0, 5 = 1 
and 5 = a, respectively. There are two transformation relations among the three 
solutions: 

U(")+(") = u(m)+(m)K(j4 j3  j, j,) ~ ' ~ ' 4 ' ~ '  = u ( ' ) + ( ' ) F ( j 4  j, j, jl). (2.11) 

U'O' = U(m)S(O,mi U'O'= u(l's'0.i' (2.12) 

We denote the transformation matrices among the three bases as S, i.e. 

Inserting (2.12) into (2.11), we obtain 

S(0,m) rc/ (0) ( t )  = P " ( ~ ) ~ ( j 4 j ~ j 2 j 1 )  = + ( ' ) ( l ) ~ ( j ~ j ~  j, jl). (2.13) 
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The important thing is that the transformation matrices ( F  or K )  among the solutions 
under the different bases are independent of i. The so-called fundamental problem is 
to determine the transformation matrices K and F. As we know, however, the matrices 
K and F are just the crossing matrices (braid and fusion matrices) of the model. 

3. KCG constraint condition of the model 

For a quadruple ( j ,  j ,  j ,  j , )  with j ,  = min( j ,  j ,  j ,  j l ) ,  we introduce a set Zk( j ,  j ,  j 2  j , )  
defined by 

I k ( j 4 j 3 j 2 j l ) = { p ~ ~ i 2 ~ 0 , 0 ~ 2 ~ ~  k, ( j ) p ) E  (KCG), (/j,)E(KCG)) (3 .1)  

where (KCG) denotes the set of vertex operators which satisfy the KCG constraint 
conditions. The definition of the set Ik means that the values of intermediate edges p 
should be constrained by the following four constraint equations: 

k constraint. 
j ,  + j ,  + p  s k 

( 3 . 2 )  

This is just the KCG constraint for the conformal block $(l) in ( 2 . 6 ) .  

then p takes values in the set 
Given j 4  - j ,  2 I j ,  - j,I, j 4 +  j ,  S j 2 +  j ,  and k sufficiently large that k 3 j ,  + j 2  + j ,  + j 4 ,  

I k  = { j4  + j , ,  j 4  + j ,  - 1, . . . , j 4  - j J .  (3.3) 

Under this case, the reduced KZ equation will become 2j, + 1 linear differential equations 
and the matrices K and F become 2j, + 1 x 2j, + 1 matrices. But for some special cases 
the cc-admissible values of p will reduce and hence the dimension of V, (number of 
p )  will be reduced as well. We denote the case under which the admissible p have m 
values as ( D M ) .  

When j ,  = j , + j 4 + j 3  - m + 1, or j ,  = j ,  + j 4 + j 3  - m + 1, orj, = j ,  + j 2 + j ,  - m + 1 ,  under 
the CG constraint, the 2j3 + 1 values of p for every case above will be reduced to m 
admissible values, the space Vo becomes m dimensional. We denote these three cases 
as ( D M ) ' ,  ( D M ) 2  and ( O M ) , ,  respectively. 

For (OM)'* '  

Zk = { j 4 +  j 3 ,  j 4 +  j ,  - 1, . . . , j 4 +  j 3  - m + 1) (3 .4)  

and for 

Ik  = { j 4 - j 3 +  m - 1, j 4 -  j ,  + m - 2 ,  . . . , j 4 -  j , }  (3.5) 

where m takes values in the region 1 S m s 2j, .  
Of course, the above consideration is only of the CG constraint. If k takes certain 

values in the region j ,  + j ,  + j 4  - j ,  < k < j ,  + j ,  + j ,  + j 4 ,  the k constraint should be taken 
into consideration. Under the k constraint the cases ( D M ) 1 * 2 9 3  will degenerate to 
lower-dimension cases (say n dimensional), we denote this case as ( D M )  k2.' ( n  < m).  
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For example, when k = j ,  + j ,  + j ,  + j ,  - n, under the k constraint, the cases ( D M )  
degnerate to (DM);?; ( O S  n S m). The intermediate edges p take values in 

{ j 4 + j 3  - m + 1,J4+j3- m $ 2 , .  . . , j 4+ j3  - n} 
m - n, j4-j3+ m - n + 1, . . . , j 4 - j 3 }  

for ( D M ) ; ~ , ,  
for (OM);-,,. 

(3.6) 
(3.7) 

Zk =0 when m = n. 

4. Solution of the fundamental problems 

The solution of the fundamental problem for the case j 3  = was given in [7], so we 
need not repeat it here. In this section we consider the case j ,  = 1 first, then we give 
the general solutions. 

For the quadruple (j41j2jl) with j,, j2,j, 3 1 we have 

zk(j41j2ji)={p E t Z a o ,  ( , ; p ) E ( K C G ) ,  (i] ,)E(KCG)}. (4.1) 

We know that the number of p in Zk is equal to dim Vo S 2j3 + 1 = 3, and dim Vo = 3 if 
and only if (case ( 0 3 ) )  

(4.2) 

From the discussion in section 3 ,  we know that the case ( 0 3 )  can degenerate to ( D2)’3233 
and 

First we investigate some basic problems in case ( 0 3 ) .  We can see that any of the 
three bases of Vo defined in section 2 has three elements in case ( 0 3 ) .  j , ,  can bej,+ 1, 
j,, j ,  - 1 and we denote these three elements in { U:::} as U:’’ ( i  = 1,2,3) .  We can also 
write {U:::} and { UjpL’} as U:’)  and where i = 1,  2, 3 correspond to j 2 3  =j,+ 1, 
j 2 ,  j 2  - 1 and j 1 3  = j ,  + j ,  , j ,  , j ,  - 1, respectively. 

j ,  - j ,  s j ,  - 1 

under the special choice of j ,  ( i  = 1,2 ,4) .  

j, + 1 s j, + j ,  1 + j, +j ,  + j 4  E Z. 

We define 

R 1 ~ ~ j ~ ’ = ( k + 2 ) ( ~ ~ ~ ’ - A 4 ) ~ ~ ~ ’  i223u)1’ = ( k  + 2 )  yl ” u ~ ”  
(4.3) 

i 2 1 3 ~ ; ~ ’ =  ( k+2)yjX’u:“’ 

where 

So we get 

A, = A,, + Aj2 + A,, - Aj4. 
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we have 

and 

AI,=A, ( j 2 $ j l )  

A; = A, ( j 2  e j 4 ) .  
The ei are given by 

1 
E .  =- ( j ,  + j2  + 1 + j 4  - 2ji)  

E ;  =- ( j l + j 2 + j 4 - 2 j i )  i =  1,2 ,4 .  

i = 1, 2,4  
1 

c0 = - ( j ,  + j ,  + j 4 +  2 )  

&A=-- ( j l  +j2  +j4  + 1) 

k + 2  ’ k + 2  
(4.9) 

1 
k + 2  

1 
k + 2  
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Equation (2.6) becomes 

[e+ 
y\l)- a y )  

5 5 - 1  

L 

0 

and equation (2.7) becomes 

d 
d5 
- (q j i " ' )  = 

where 

1 0 
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From (4.11), we have 

(4.14) 

and ((p‘,”,&)’(p$’) and ((p\”,’(p$”,’(p:”,) satisfy the same equations as (4.14). It is difficult 
to solve equations such as (4.14), but we can get the exponents of equations for qo‘,?’, 
q$:’, pi:’ at the singular points L=O, 1, CO. We denote the solution by the exponents 
of the equation at the singular points as 

(4.15) 

Similar expressions can be obtained for 9‘;’ and cplj“’. 
In order to find the explicit form of the K (or F) matrix, we first need to solve 

the solutions of the cases ( 0 2 ) i 3 2 3 3  and ( 0 1 ) ’ 9 2 , 3  with the help of the knowledge of 
hypergeometric functions, and then we come back again to investigate the case ( 0 3 ) .  
First we consider the case ( 0 2 ) ’ .  Under this case, j ,  = j 2 +  j 4 ,  Ik = { j 4 +  I, j 4 }  and E ~ ,  E ;  

become 

1 2j4+ 1 E;=--  2j4 
E :  = O  E ,  =- & 2 = -  

k + 2  k + 2  k + 2  
(4.16) 

2j ,  + 1 
E;=-- 

2jl  + 2 
Eo = - 2j2+ 1 E;=-  2.h 

E4=- 
k + 2  k + 2  k + 2  k + 2  * 

The transformation matrices (4.8) become 

(4.17) 
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So in this case, dim Vo = 2, and it is convenient to choose the bases of Vo as { u y ' ,  U:"'}, 
{U\'), ui')} ,  {U!"), U:"'}, which correspond to j,, = j,+ 1, j , ,  j,, = j 2 +  1, j 2 ,  and jI3 =jI, 
j ,  - 1,  respectively. The transformation matrix S(mo' for these new bases becomes 

where 

(4.18) 

With the help of the hypergeometric functions (see [7]) and after some calculations 
we can obtain the elements of the braid matrix K defined in (2.11). For the case (D2)',  
the matrix elements are 

K2 1 (4.19) 

where q =exp[2~ i / (k+2) ] .  

and (D2)3. 
After a similar discussion we can also obtain the braid matrix K for cases (02) '  

For (D2)2, j2 =jl + j 4 ,  and the elements of the braid matrix for this case are 

(4.20) 
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For ( ~ 2 ) ~ ,  j, =jl + j, ; the elements of the braid matrix for this case are 

(4.21) 

In the following we want to discuss the case (Dl) .  Because dim Vo= 1, it is not 
important what bases are chosen. But for compatibility with condition ( 0 2 )  we choose 

for ( 0 1 ) ' 3 ~  

for (D1)2 

u ( o )  = ( 1 )  = (aJ' 

u ( o )  = (11 = 
u u  

U 

i.e. 

1 f 0 r ( 0 1 ) ' 3 ~  
-1  for ( ~ 1 ) ~  * 

S(Cc0) = 

The exponents of equation (2.6) at 5 = 0, 1, CT, for cases ( 0 1 )  are given as 

(4.22) 

2% 
+ I '  = k+2 

-2jl - 2 
k + 2  Y'20' = ~ 

(4.23) y'O'=- 1 (2j4+4) p'= -- 1 (2j2+2) y"'=- 2.h 
k + 2  k + 2  k + 2  

( 0 1 l 2  

We write $(() = u("tj( ' ) ( l ) ,  where I)'"', 4"' and $'m) satisfy the equations 

The solutions to (4.24) are 

(4.24) 

(4.25) 

For cases (Dl)'33, we have I)(m)= q - ' 2 I ) ( O ) ,  and for ( 0 1 ) *  we have $(cc l=  q ( J 2 + ' 1 J / ' o ' .  
From S(om) I) ( a ) =  $'"'K we get the braid matrices for cases ( 0 1 ) ' 3 2 * 3  

( 4 . 2 6 ~ )  
(4.263) 

We have discussed the cases ( 0 2 )  and ( 0 1 ) .  We can see that the crossing matrix 
K depends only on the exponents of the equations at singular points. This is also valid 
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for ( 0 3 ) .  Since ( 0 2 )  and ( 0 1 )  are special cases of ( 0 3 )  with some constraints, we 
can get the braid matrix for ( 0 3 )  through that for (01)1,233 and (02)1*233. 

First we introduce some quantities which are combinations of the exponents of 
K - z equations for case ( 0 3 ) :  

a1  = +( y y  + y'l" + #)) = Eo 

prO'=f(r\O'+r'l"+r~")=E1 
y1 = +( y y  + y(l"+ #))  = E2 

p'l" = +( r\"' + r'"' + Y y ) )  = E4 

a 2 = - ~ ( y : O ) + y : " + y : " ) ) =  E; )  

p:"' = -4( ?y)  + Y i l )  + p) = E ;  

y2  = -f( Yy) + Yp + Y\,') = &; 

p y =  -f(Y:~)+y:"+yjO')=&~. 

(4.27) 

Then the elements of K for ( 0 3 )  are given by 

Kow can we know the expression for K for case ( 0 3 )  is given by (4.28)? We have 
the following explanation. For example, the K I 1  elements of matrix K for case ( 0 3 )  
should degenerate to KI1 of equation (4.20) when j2 =jl +j4, and degenerate to (4.266) 
when j2 = j, +j4+ 1, which means that the K , ,  for ( 0 3 )  has the form given in (4.28); 
the Kzl  of K for ( 0 3 )  is determined by its degenerate form KI1 in (4.19) and KZ1 in 
(4.20). Other elements of K for ( 0 3 )  can also be determined by such a method. 

In the foregoing, we have discussed the braid matrix K f0rj3 = 1. A similar method 
can also be used to determine the crossing matrices of ( 0 4 )  for j ,  =+ from their 
degenerate forms in ( 0 3 )  ( 0 2 )  1 9 2 + 3  and ( 01)1,233. For generic j,, the crossing 
matrices for (D(2j3+ 1)) can be determined from their form in the cc-degenerate 
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cases (D(2j3))”2’3 (D(2j3- l))132*3,. . . , (Dl)13233. The braid matrix K ( j 4  j 3 j 2 j l )  for 
( D(2j3 + 1)) has the form 

K(j4j3j2j1) = ( K l , ’ )  1, Z’=O, 1, .  . . , 2 j 3 .  (4.29) 

The elements are 

(4.30) 

1 
Po0(z-2j1 -2j3+ Z)Poe(z-2j4-2j3+ V)Po,(jl+j2+j3+j4-z) 

1 
P,,(2j1+2j3+2j4- 1’- I-z)P,,(jl+j2+j4+3j3-Z- Z’-z) 

X 

X (4.31) 

where 

and all P(0)  = 1. 
Now let us discuss the expressions for K under the KCG constraints. The expression 

for K(j4j3j2jI)  given by (4.30) is a KCG free case. But the matrices of KCG constraint 
cases can be given by some submatrices of K given by (4.30). 

The K matrices of CG constraint cases ( D M )  are given by the submatrices as follows 
K[(DM)I = (Kl,,) (4.33) 
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for ( D M ) '  

1 = 2j,-  m + 1, 2j3-  m + 2 , .  . . , 2j3 I 1 ' =  0 , 1 , .  . . m - 1 

for ( D M ) *  

1 = 0,1, . . . , m - 1 I l ' = O ,  1 , . . . ,  m - 1 ,  

and for ( D M ) 3  

1 = 0,1, . . . , m - 1 
I' = 2j3 - m + 1, 2j3 - m + 2, . . . , 2 j3 .  

3443 

(4.34) 

(4.35) 

(4.36) 

When the level k takes certain values in the region j ,  + j ,  - j ,  +j4 < k < j ,  + j ,  +j,  +j4 
the k constraint condition must be taken into consideration. In the k constraint case, 
because of trunction of the intermediate edges, some of the elements defined in (4.30) 
are not admissible, the admissible elements provide the braid matrix for this case 

K ( k  constraint case) = ( K,ff) (4.37) 

1, I'  =jl + j 2 + j 3  + j 4 -  k, j ,  +jz+ j 3 + j 4 -  k+ 1, . . . , 2 j3 .  (4.38) 

In this case, the non-admissible elements in (4.30) may develop poles, but the behaviour 
of the admissible elements is good. 

So far in this section we have discussed the braid matrices K of the model. Similar 
procedure can also be done for determining the fusion matrices F, which have the 
form (for the KCG free case) 

W4 j 3  j 2  jl 1 = ( FIIO 

F,,, = [ ( 2j4 + 2j3 - 2 1' + 1 ) ( 2j, + 2j3 - 2 I +  1 )] -'I2( r ( ( 2j4 + 2j, - 2 I' + 1 )/ ( k + 2) ) 

1, l ' = O ,  1,. . . , 2 j3  (4.39) 

(4.40) 

From (4.30) and (4.40), we obtain the relation between K and F 
K p p ( j 4 j 3  j ,  j , )  = ( - 1 ) P + P - I , - J 4  ( [  ( 1  + C l  4 --[ p - c - ) / 2  p ~ p , A j 4 J 3 j l j 2 )  (4.41) 

where we use the intermediate edges p and p to present indices of the matrices, and 
cJ = j ( j +  1). 

5. Relation between the SU(2) wzw model and the SL(2, q )  quantum group 

The braid matrix of the SL(2, q )  quantum group has the form [ 5 ]  

the last factor on the right-hand side is the quantum 6 j  coefficient [8]. In [ 5 ]  it is 
pointed out that the braid matrix K ( j f 4 j )  of the S U ( 2 ) ,  wzw model and the braid 
matrix C [ ' j 2  of SL(2, q )  are connected by a similarity transformation. But we find 
that in general cases, K (  j 4  j 3 j ,  j , )  and C[kk] are not related by similarity transforma- 
tions, but by triangle matrix transformations. From the expression for K ( j 4 f j 2 j l )  given 
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in [7], we obtain 
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given by (4.30) and the quantum 6j coefficients are related as follows: 
K , ~ ,  = (- 1 ) j 2 - J 4 + 2 J 3 - f ' - l  q-j,(.i,+j4)+f'i4+fi, - j ;+ j3(  l + f ' -  I 1 - 1  I / 2 ) f ( / -  I I - (  I / z ) I ' (  1'- I 

where 

q n l 2  - q-"l2 
P 2  - Ci2 [ n l =  (5.7) 

The function f ( r )  is square root of some products of ratios of r functions: 

r ( - (2 j4+2j3  - 21'+ 1 ) / (  k +  2 ) ) r ( ( 2 j ,  +2j3 - 21+ l ) / ( k +  2 ) )  
r ( (2 j4+  2j3 -21'+ l ) / ( k  + 2 ) ) r ( - ( 2 j ,  + 2j3 - 21+ l ) / ( k  + 2 ) )  

p ( j l+ j2+j ,+ j4 -~+1)  p ( j 2 + j 4 - j l  - j3+1)  
p ( j l  +j2 +j3  +j4 - I'+ 1 )  p ( - j l  + j 2  + j 3  +j4 - 1 ' )  

d j l  - j 2  + j 3  +j4 - 1 )  p ( j l  +j2  + j 3  -j4 - U 
p ( j l  - j 2  + j3  +j4 - 1')  p(  j ,  +j2 - j 3  - j 4 +  1 ' )  

p (  1 )  p(2j3 - 1 )  p (2 j1  - 1 )  p2(2j4 + 2j3 - 21'+ 1 )  p (2 j ,  + 2j3 - I + 1 )  
~ ( 1 ' )  p(2j3 - I ' )  p (2 j4-  I ' )  p2(2 j1  + 2j3 -21+ I )  p(2j4+ 2j3 - I'+ 1 )  

f (r) = ( 
X 

X 

X- - ) I / *  (5.8) 

where 

(5.9) 

From (5.6) we can see that the braid matrix of the SU(2)k  wzw model and that of the 
SL(2 ,  q )  quantum group differ by a factorf(r) .  From the discussion in [lo], we know 
that f (r) is dependent on the structure constant of the SU(2)k  wzw model. If the 
conformal block $(l)  is not normalised to 1 ,  but normalised to the structure constant, 
then the crossing matrices of the SU(2)  wzw model become identical to those of the 
SL(2 ,  q )  quantum group. 
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